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Abstract—Due to the enormity of the solution space for sequential or-
dering problems, non-exhaustive heuristic techniques have been the focus
of many research efforts, particularly in the field of operations research.
In this paper, we outline an ecologically motivated problem in which en-
vironmental samples have been obtained along a gradient (e.g. pH), with
which we desire to recover the sample order. Not only do we model the
problem for the benefit of an optimization approach, we also incorporate
hybrid particle swarm techniques to address the problem. The described
method is implemented on a real dataset from which 22 biological samples
were obtained along a pH gradient. We show that we are able to approach
the optimal permutation of samples by evaluating only approximately 5000
solutions - infinitesimally smaller than the 22! possible solutions.

Index Terms—Particle Swarm Optimization, Environmental Gradients,
Sequential Ordering

I. INTRODUCTION

One of the most notable Sequential Ordering Problems (SOP)
in optimization theory is the canonical Traveling Salesman
Problem (TSP) [1]. In the most general case, a figurative sales-
man must travel between cities ensuring that he visits all the
cities on his list only once and does so by traversing the shortest
distance. Therefore, the goal of the optimization is to complete
his itinerary by listing the cities in order for which he must visit.
There are numerous papers dedicated to the topic, correspond-
ingly, we have referenced several of them [2], [3], [4], [5], [6].
This paper focuses on a biologically motivated SOP.

The specific SOP addressed within this paper focuses on or-
dering samples that were obtained along an environmental gra-
dient. We note upfront that in the field of community ecology,
the term sample has diverged from its usage in signal processing
or statistics, and refers to an observation. Environmental gradi-
ents are defined as a spatially varying aspect of the environment
that is expected to influence the composition of species present
[7]. Examples of these gradients include pH, temperature, salin-
ity, moisture, etc. There are generally only a few gradients of
’large effect’ present at a time and location that are affecting the
respective species abundances in the environment. For example,
it has been shown that salinity strongly influences the distribu-
tion of bacteria in an environment [8]. There are innumerable
environments in which an ecological study may focus upon; ex-
amples include soil [9], sea [10], human [11], [12] and ant guts
[13]. Given a bundle of samples obtained from an ecological
study, can we provide the ordering of samples correlated with
an unknown environmental gradient present?

II. BACKGROUND

Investigations of environmental gradients are a component of
the broader class of study known as ordination in the field of
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community ecology [14]. The term ordination derives from at-
tempts to order a group of objects in any number of dimensions,
preferably few, that approximates some pattern of response of
the set of objects. The usual objective of ordination is to help
generate hypotheses about the relationship between the species
composition at a site and the underlying environmental gradi-
ents [15]. In our study we are concerned with unconstrained
gradient analysis; gradients are unknown a priori [7]. In other
words, the species tell us what the gradient are. Traditionally,
this is performed using an ordination technique such as De-
trended Correspondence Analysis [16]. The sample locations
are recorded along the unknown gradient prior to analysis, from
which the shape and scale of the gradients are inferred. The
problem focuses on analysis when the sample locations are not
recorded and we wish to recover the correct order.

Bacteria are identified at each sample by using the univer-
sal bacterial barcode, 16S rRNA gene [17]. These genes are
sequenced for each sample using DNA sequencing technology
such as pyrosequencing [18]. Sequences are classified using
readily available online tools such as the RDP classifier [19].
Once the sequences are classified we are able to identify the
species present in each sample and their respective abundances.
Once arranged in a matrix, we are able to process the samples
using the proposed algorithm.

Particle swarm optimization (PSO) methods have been in de-
velopment since the mid-1990s [20]. Since their inception it has
been a common practice to combine PSO methods with other
techniques forming a hybrid approach. For example, a hybrid
algorithm coupling ant colony optimization with local search
procedures was developed to address problems in sequential or-
dering [6]. A very recent paper described an algorithm devel-
oped for the traveling salesman problem, combining PSO with
a local search method known as SOP k-Exchange [5]. Moti-
vated by the potential fit of this algorithm to our environmen-
tal sampling problem, we have sought to appropriately model
our problem for this framework. Herein, we describe our model
and the set of modified procedures to address our environmental
sampling dilemma.

III. METHODS

A. Model Setup

We begin with a vector array of unordered samples obtained
along an environmental gradient,

x = {x1,x2, ...,xn},

in which, {xi εZ : (1,n)} and xi 6= xj ∀ i 6= j,

where Z : (1,n) are all discrete integer values over range 1 to n.
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Each one of these samples contain the abundance of each
species found at the sample site,

spi = {spi1,spi2, ...,spim}, i= 1 : n.

Since we are sampling the bacteria present at each sample, and
there is incredible diversity within the bacterial community, we
generally have m >> n, so we form a ’tall’ m x n data matrix
which will be input to our algorithm.

In order to determine if our environmental samples are cor-
rectly ordered, we rely on biological assumptions of the bac-
terial responses to the underlying gradient. It is assumed that
this gradient is affecting the populations of bacteria [7]. Partic-
ularly, we assume that each type of bacteria prefers a particular
environmental condition [21]. As this condition varies spatially
across the gradient, so will the abundance of each respective
bacteria. For example, biologist use a unimodel distribution to
model the abundance of bacteria across a pH gradient [22]. In
this particular study, there is an immense amount of diversity
between bacteria, having pH preferences ranging from of 4 to 8
[9].

To assess the feasibility of a permutation of ordered samples
to reflect the true ordering we separately observe the distribu-
tions of all species. To this end we have chosen the Wald-
Wolfowitz runs test, wi(x) [23]. For a given permutation, we
test the null hypothesis that the abundance of each species is
randomly distributed across the samples. When the null hy-
pothesis cannot be rejected for most species we infer that the
samples are incorrectly ordered. However, when the null hy-
pothesis is rejected for many species we infer that the samples
are correctly ordered. This is in accordance with the biologists’
selection of the gaussian model of species along a gradient [21].
Even in cases where there is dispute among biologists inter-
changing the gaussian model for other distributions [24], our
model is still effective since we are testing for randomness ver-
sus any distribution.

Formally, we set up our objective/fitness function as follows,

y =
∑M

i=1wi(x), {y εZ : (0,m)} and {wi εZ : (0,1)}

in which our goal is to chose the permutation such that,

xcorrect =max
x

(y).

B. Algorithm Implementation

PSO algorithms were inspired by the behavior of insects in a
population [20]. We model each insect as a particle represent-
ing one solution to our optimization problem. The collection of
particles, referred to as the swarm, exist in the solution space.
Each particle has a position and a velocity. With each iteration
of the PSO algorithm, a particle moves in the solution space
based on its performance on the objective/fitness function and
that of the entire swarm. The benefit of this behavior is that
in many cases the optimization avoids local minima. The op-
timization terminates once the maximum number of iterations
has been reached or the score of the fitness function passes a
predetermined threshold.

Hybrid PSO Algorithm Pseudocode

Input:
· Data matrix of species abundance:

[(# of Species) x (# of Samples)]
· Fitness test: Wald-Wolfowitz
· m: # of particles for PSO
· k: # of iterations
· Free-parameters: {w,c1,c2}

Initialization:
1. Input seed, xs: random permutation of integers 1:n
2. Compute initial particle velocities, v0

i :
a. Choose # of IM{} for each particle’s initial velocity:

· Drawn from: U [n/4, n/2]
b. Select the node and displacement for each move:

· Node from U [1, n]
· Displacement from: U [−n/3, n/3]

3. Compute initial particle positions:
x0

i = xs + v0
i , i = 1:m

4. Set each particle best to initial:
pi = x0

i

5. Run fitness test on all x0
i

6. Set global best position:
g = x0

i s.t. max
x0

i

(fitness)

Iteration:
For iter = 1:k
For particlei = 1:m
A. Compute velocities: vk+1

i :
1. wvk

i

Compute r1, r2, then:
2. c1r1(pi − xk

i ) distance of current to particles best
3. c2r2(g − xk

i ) distance of current to global best
B. Add velocities sequentially to xk

i :
xk+1

i = xk
i + vk+1

i

C. Compute fitness of each xk+1
i :

if fit(xk+1
i ) > pi, then pi = xk+1

i

if fit(xk+1
i ) > g, then g = xk+1

i

D. Perform Local Enhancement on g using SOP-3 Exchange
E. Update g
End

End

Definitions:
· xs: position (permutation) seed for all particles
· xk

i : position for particle i at iter k
· vk

i : velocity for particle i at iter k
· pi: best position (permutation) for particle i
· g: best position (permutation) of all particles
· r1, r2: random values from U[0,1]
· Free parameters:

w: current particle
c1: particle best
c2: global best

1

Fig. 1. Pseudocode of the proposed hybrid PSO algorithm

The traditional formulation of a PSO algorithm begins with
velocity, (please refer to Figure 1 for notation definitions)

vk+1
i = wvk

i + c1r1(pi− xki )+ c2r2(g− xki )

and position,

xk+1
i = xki + vk+1

i .
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Since the particles are each a permutation of unique integers,
the velocities are defined as insertion moves, IM. Each IM(i,d),
moves the value i in the particle by a displacement, d, either left
or right. Each of the three components of the velocity are com-
puted separately and added sequentially to the current particle
position in equation. Greater detail on this procedure may be
found in the references [5].

Our full implementation of the hybrid PSO algorithm is de-
scribed by pseudocode in Figure 1. With the input of our data
matrix we also choose the number of particles to evaluate on
each iteration and the number of iterations to complete. The
velocity, or rather the IM for each particle is created by sam-
pling from uniform distributions. The respective velocities are
added to a randomized seed vector containing the integers from
1 to the number of samples, thereby rearranging the seed per-
mutation for each particle’s initial position so that each one is
unique. The best respective particle position, pi, is set to the
initialized position. The fitness test is run on each particle and
the one performing the best is stored in the global best position
vector, g.

Once all of the particles are initialized the algorithm com-
putes the velocity for the next iteration. The velocity for each
particle is comprised of three components. The first component,
weighted by the free-parameter, w, contributes the respective
particle’s previous velocity to the current iteration. The sec-
ond component, weighted by the free-parameter, c1, contributes
the difference between the particle’s best and current positions.
The third component, weighted by the free parameter, c2, con-
tributes the difference between the swarm’s best and the respec-
tive particle’s current position. Each velocity is added sequen-
tially to the particle’s position and the fitness test is run. The
particle’s best position, pi, is updated if the fitness test score ex-
ceeds those previous. Likewise, the swarm’s best position, g, is
updated when the fitness test score of any particle exceeds the
global best.

Before we continue to the next iteration we perform a local
enhancement search on the global best position using the SOP
3-Exchange algorithm [6]. Essentially, this algorithm swaps
groups of samples with one another moving iteratively through
the sample first in the forward direction, starting with index 1,
and then in the backward direction, starting with index n. After
each swap the fitness is run on the current permutation and the
exchange algorithm terminates once the fitness has increased
due to a swap. The global best position is updated and the PSO
algorithm continues again with the next iteration. More detail
on this procedure may be found in the references [5].

In addition to the PSO algorithm described above, we have
implemented an adaptive c2 parameter algorithm to avoid stag-
nation of multiple particles converging on the global best posi-
tion. The procedure is described in Figure 2.

IV. RESULTS

To evaluate the performance of the algorithm on a pragmatic
dataset we have used data from a recent publication in which
environmental samples were collected along a pH gradient in
soil [9]. There were 22 samples in this study selected for analy-
sis, each from soil with a different pH value. The measured pH
values ranged from 4.1 to 8. Over 5000 different bacteria were

Adaptive c2 Parameter Pseudocode

· Implemented for stagnation avoidance
· Update parameter c2 after checking fitness

of all particles on each iteration

Initialize:
· Set c2 = 1

Iteration:
For iter = 1:k

1. Set counter nrk = −1
2. for each fit(xk

i ) = fit(g)
nrk = nrk + 1
xk

i = randperm(n), (i.e. restart particle)
end

3. c2 = c2 − 0.01 ∗ nrk
End

1

Fig. 2. Pseudocode of the adaptive c2 procedure

identified by the study with the abundances of each recorded at
each sample. We preprocessed this data to remove bacteria that
were present in less than 4 samples. The remaining 568 bacteria
were included for the study.

Before we ran the PSO algorithm we checked the fitness of
the true ordering of the samples. We found that 338 bacteria
out of the 568 rejected the null hypothesis that the bacteria were
randomly distributed. We then randomly swapped two samples
causing a slight reordering of the permutation, and found that
the worst-case swap dropped the number of bacteria rejected in
the null hypothesis from 338 to 336. We also checked up to
50,000 random permutations and recorded the fitness score as
shown in Table I. The highest score obtained was nearly 60%
less than our goal of 338. The mean value was 10. Therefore,
we believe we have found the global maximum of bacteria re-
jecting the null hypothesis to be 338.

We ran the algorithm on this dataset using 25 particles and
20, 50, 100, 300 and 500 iterations. We set the free-parameters
w, c1, and c2 to 1, 1, and 1, respectively. These default values
were chosen based on previous implementations of PSO [5].
We ran the algorithm on these conditions both with and without
the local search procedure, SOP 3-Exchange. The results are
summarized in Table II.

V. DISCUSSION

There are an enormous number of potential solutions to a se-
quential ordering problem. In our test dataset we have 22 sam-
ples, corresponding to a solution space containing 22! possible
permutations. We are searching for the permutation that ex-
hibits the best fitness with regard to some specified criteria. It is

TABLE I
PERFORMANCE OF RANDOM PERMUTATIONS ON PH DATASET

Fitness Score
Iterations High Mean

5000 121 10
50000 151 10
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TABLE II
PERFORMANCE OF PROPOSED ALGORITHM ON PH DATASET

Fitness Score
Iterations w/oLS w/LS

20 86 111
50 161 149
100 156 140
200 186 212
300 190 201
500 175 203

unrealistic to evaluate all of the solutions even for a small num-
ber of samples as in this case. Therefore, we have evaluated the
potential of using non-exhaustive, heuristic based approaches to
our biological sample ordering problem.

From our experiments we have found that iterating the algo-
rithm 20 times, without the LS implemented, yields a fitness
score of 86. This is already encouraging since we have only
observed 500 different permutations (25 particles, 20 iterations)
for this test. In contrast, we observed the fitness of 5000 random
permutations resulting in a mean score of 10 and a random high
of 121.

Note that in PSO all of the particles are initialized randomly.
We may observe cases where fewer iterations score higher. This
is exemplified by comparing 50 to 100 iterations. However, we
find that increasing the number of iterations for PSO beyond
100 generally provides a solution of increased fitness. We find
the optimization is getting ’stuck’ around fitness scores of 200.
Including the LS method boosted performance with both the 20
and 200 iteration experiments.

We have found that 50,000 random permutations results in
a mean fitness of 10 and a random high of 151. These results
are exciting since we consistently obtain a fitness of 212 at 200
iterations with only having to check 5000 solutions, plus the
local searches. Due to time constraints we have not performed
any parameter tuning and are thus using default values for our
free parameters. Reasonably, we are optimistic that we may
reach our fitness goal of 338 using the described method with
parameter tuning and algorithm refinement.

VI. CONCLUSION

In this study we evaluated the feasibility of using optimiza-
tion techniques to solve sequential ordering problems for the
detection of environmental gradients. We have shown that the
algorithm as implemented performs consistently given at least
200 iterations. Notably, this is considerably superior than at-
tempting to obtain the correct permutation randomly as Table I
suggests. The algorithm’s performance, as described in Table
II, was obtained without any parameter tuning or further modi-
fication. We predict that we will reach the specified fitness goal
after all parameters have been tuned.
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[9] Johannes Rousk, E. Båå th, P.C. Brookes, C.L. Lauber, C. Lozupone, J.G.
Caporaso, R. Knight, and N. Fierer, “Soil bacterial and fungal communi-
ties across a pH gradient in an arable soil,” The ISME Journal, vol. 4, no.
10, pp. 1340–1351, 2010.

[10] JC Venter, Karin Remington, JF Heidelberg, AL Halpern, and D, “Envi-
ronmental Genome Shotgun Sequencing of the Sargasso Sea,” Science,
vol. 304, no. 5667, pp. 66–74, 2004.
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