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Abstract

Recent advances in next-generation sequencing have enabled high-throughput deter-
mination of biological sequences in microbial communities, also known as microbiomes.
The large volume of data now presents the challenge of how to extract knowledge–
recognize patterns, find similarities, and find relationships–from complex mixtures of
nucleic acid sequences currently being examined. In this chapter we review basic con-
cepts as well as state-of-the-art techniques to analyze hundreds of samples which each
contain millions of DNA and RNA sequences. We describe the general character of
sequence data and some of the processing steps that prepare raw sequence data for in-
ference. We then describe the process of extracting features from the data, in our case
assigning taxonomic and gene labels to the sequences. Then we review methods for
cross-sample comparisons: 1) using similarity measures and ordination techniques to
visualize and measure distances between samples and 2) feature selection and classifi-
cation to select the most relevant features for discriminating between samples. Finally,
in conclusion, we outline some open research problems and challenges left for future
research.
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1 Introduction

Metagenomics is the study of nucleic acids extracted from the environment, as opposed to
genomics, which studies the nucleic acids derived from single organisms. In a metagenomic
study, a sample is collected from the environment, which can be a gram of soil [1,2], milliliter
of ocean [3], swab from an object [4], or a sample of the microbes associated with a larger or-
ganism, such as humans [4,5], sometimes called the “microbiome”. Until now, microbes were
usually studied in isolation, whereby researchers literally isolated and cultured the organism
to sequence and study its genome and gene functions. However, microbes actually live in
communities, cooperating with and competing against each other. While found commonly
in soil, water, buildings, etc. in our everyday lives, microbes are also found in unusual places
like the extremely cold Antarctica [6], extremely hot springs [7], and the hyper saline Dead
Sea [8]. They regulate the global carbon and nitrogen cycles [9, 10] of the Earth and are
thought to be responsible for half the oxygen on the Earth [11].

It is now thought that these communities of microbes not only play a large role in the
environment but also human health. Microbes are found at almost every interface of the
body, including skin, mouth, airways, and even places like the lungs and amniotic fluid once
thought to be sterils [12, 13]. It is thought that like environmental ecosystems, the more
diverse the human ecosystem, the better we can ward off disease [14, 15]. The concept of
microbiome has additionally spurred the hypothesis that human hosts entertain multiple
stable ecological community types, termed enterotypes [16], and has been suggested as a
forensics tool [17, 18]. Though many groups are pursuing metagenomic sequence data the
computational metagenomic methods used to study the communities are underdeveloped, so
we discuss recent methods in the paper. However, almost no one has scratched the surface
to use the findings of these studies to engineer microbiomes to improve the environment,
generate biofuels, and cure disease. This leaves to the imagination – how can personal omics
profiling revolutionize medicine [19]?

Currently to profile a metagenomic sample, DNA or RNA is extracted chemically and
turned into purified DNA. This is prepared and fed into a machine that determines the
sequence of information-containing monomers in DNA fragments. This process is called
“sequencing” and has, thanks to technological improvements in the recent decade, become
much faster and much cheaper, producing millions of short strings of data, called sequencing
reads, representing millions of biological molecules.

From this digitization of DNA, biologists can address the questions “Who is there?” and
“What are they doing?”. [20–23]. The answer to the “who” question, obtained by inferring
the name or position in the taxnomy of the organism from which a sequence was likely
derived, is called taxonomic classification. The answer to the “what” question, the process
of recognizing the biochemical functions of the sampled genes, is called functional annotation.
The current algorithms to solve these problems [24, 25] fall short of the speed and accuracy
required to process and compare the volumes of data currently being generated. In addition,
algorithmic procedures to study how environmental factors affect microbial populations are
under active development.

Sequence data comes in two broad kinds–the sequencing of targeted genetic loci, selected
by PCR, called amplicon sequencing, and the sequencing of random genetic loci, called
shotgun sequencing. Specific subsets of the 16S ribosomal subunit gene in prokaryotes
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and the ribosomal spacer ITS in fungi have been popular targets for amplicon metagenomics.
For both sequencing methodologies, sequences are filtered, transformed, and interpreted
by explicit or implicit comparison to a database of sequences that are presumed known.
This approach is called “closed-reference annotation.” The number of possible sequences is
extremely large: 4100 = 1060 possible 100-basepair(bp) reads. Annotation provides the first
round of dimensionality reduction, mapping from this extremely highly dimensional space
to the merely large (106 − 108) vector space of annotations.

Sequencing techniques naturally divide into targeted and shotgun sequencing. Shotgun
data are more complex, require greater sequencing depth, and have thousands more possible
annotations. Targeted sequencing, called amplicon sequencing, are generally less expensive
and permit larger numbers of samples to be sequenced for similar cost, but are confined to
providing examples of sequences of a specific gene, potentially answering only the “Who”
question. Shotgun sequences are able to address the “What” question because they consist
mostly of protein-coding sequence which has biochemical function, but cost much more to
analyze. Though amplicon and shotgun sequence data products are dramatically different,
the analytical techniques for comparing samples and drawing inferences post-annotation are
very similar.

We describe the process of generating sequence data, a variety of procedures to extract
features from the sequence data, the mathematical procedures for sample comparison, vi-
sualization, and feature selection, and describe future challenges for the interpretation of
sequence data. Since metagenomic data comprise sequences from unknown mixtures of un-
known organisms, the field is challenging indeed.

2 Preprocessing

Nucleic acid sequences are inferred from highly-multiplexed data acquisition systems which,
in batches, capture signals that reveal the sequence of 105 − 109 individual molecules, often
called templates. Data from sequencing instruments passes through a number of steps before
comparison to existing annotated biological sequence data. Collectively called preprocessing,
the steps of base calling, sequence filtering, vector removal, sequence compression and as-
sembly, and gene prediction are steps to filter, condition, and compress sequence data before
annotation.

2.1 Base calling

All modern sequencing techniques use spatial separation to multiplex the large number of
templates and have an analog-to-digital conversion that converts the chemical information
into digital data. Depending on the particular sequencing technology, the raw signals can
be single-color images (pyrosequencing), four-color images (Illumina, PacBio, ABIsolid), or
arrays of potential sensors (Iontorrent). The initial stage of recognizing the sequence of bases
from the raw instrument output is called base calling; this is usually done with vendor-
provided software. The basecallers produce the symbols A, C, G, and T, to indicate the four
bases, and the symbol N to indicate complete uncertainty in the identity of the underlying
base. Sequences containing N (the ambiguous base symbol) require special handling and
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@HWI-E4:2:1:10:1440!
TTCCGCGGGCTGCTCGGACGGCTGTTCCGT!
CGGCTGCTCGGCCGGCTGCTCCGCGGGCTG!
CTCGGCGGGCTGTTTCGCGGGCTGCGCCGG!
CGGGTGCGCGGCGGGGTTGTTCGGCACGCG!
CTGTG!
+HWI-E4:2:1:10:1440!
EDEEEEEEEDDEDDDDDCBDDBBDACBBCA!
ACCBBBBBCBB/0A/@@B/A@@A>@BA@@@!
;@?:@//0@0:@/>=?A@A@?;:;6-5;##!
##############################!
#####!
@HWI-E4:2:1:10:153!
CCGGTTGGAATGAAAAATCCTACAAGCGGT!
GACTACGCAGTTATGATAAACGCAATTTCT!
GCAGCCCAGCATTCCCACACTTTTATTTAC!
CGTGGCTGGGAAGTTCATTCAGACGGAAAC!
CCTCA!
+HWI-E4:2:1:10:153!
B@BBBCCCCCCDDCCDDDDDDDDDDDDDDD!
DDDDDDDDDDDD<DDDDDDDDDDDDDDDDD!
DD<DDDD<DD1DDDDDDDDDDCDDDDDDCC!
CDBDBBDDDDC<CCCCBDC@<<B0AA00?0!
B@BB<!
@HWI-E4:2:1:10:695!
GTCGATGAGGGCGGCAGCAGGACCCTGCGC!
ATCACCAACCCCGCTCGATTCTGGGAGCGC!
AGCAACTACCTGGTCATCCAAATCGAGTAA!
CCACACCCTCATCATAAAAAAACAGAAGGA!
CGGAA!
+HWI-E4:2:1:10:695!
CBCDC0DCDDDCDDCCDCCDDCCBCCDCDB!
CCCCABCCCBCBCCCCDBCC@CBBB@B?B?!
@A@@B?BA?8BBA<;?B;9@>?@<B>-A?;!
?@9B@.@@CBCB9BC@>;0@;;.AA;0=?;!
?@<;,!

>HWI-E4:2:1:10:1440!
TTCCGCGGGCTGCTCGGACGGCTGTTCCGT!
CGGCTGCTCGGCCGGCTGCTCCGCGGGCTG!
CTCGGCGGGCTGTTTCGCGGGCTGCGCC!
>HWI-E4:2:1:10:153!
CCGGTTGGAATGAAAAATCCTACAAGCGGT!
GACTACGCAGTTATGATAAACGCAATTTCT!
GCAGCCCAGCATTCCCACACTTTTATTTAC!
CGTGGCTGGGAAGTTCATTCAGACGGAAAC!
CCTCA!
>HWI-E4:2:1:10:695!
GTCGATGAGGGCGGCAGCAGGACCCTGCGC!
ATCACCAACCCCGCTCGATTCTGGGAGCGC!
AGCAACTACCTGGTCATCCAAATCGAGTAA!
CCACACCCTCATCATAAAAAAACAGAAGGA!
CGGAA!

>HWI-E4:2:1:10:1440_1_88_+!
FRGLLGRLFRRLLGRLLRGLLGGLFR
GLR!
>HWI-E4:2:1:10:153_1_125_+!
PVGMKNPTSGDYAVMINAISAAQHSH
TFIYRGWEVHSDGNP!
>HWI-E4:2:1:10:695_1_90_+!
VDEGGSRTLRITNPARFWERSNYLVI
QIE!

489 !Sensory box/GGDEF family!
470 !hyphothetical protein!
241 !Co-Zn-Cd resistance CzcA!
202 !Transposase!
200 !homocysteine methyltransferase (EC 
2.1.1.13)!
175 !cyclase/phosphodiesterase !
164 !Long-chain-fatty-acid--CoA ligase (EC 
6.2.1.3)!
156 !Methyl-accepting chemotaxis protein!
149 !ABC transporter, ATP-binding protein!
147 !Pb, Cd, Zn, and Hg transporting 
ATPase (EC 3.6.3.3)!
133 !Ferrous iron transport protein B!
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Figure 1: Diagram of generic sequence analysis workflow from raw data to visualization and
classification. Each analytical step removes information; this results in a smaller volume and
smaller dimensionality of data at later stages of processing.

interpretation. Base calling produces a set of short (25-600 bp) sequences, called reads, and
a per-base-pair indication of the base-caller’s posterior probability of having reported an
accurate base. The per-base quality score is sometimes called a Phred score after an early
automated base-calling program that established the encoding standard. [26] The standard
format for data from the base caller is FASTQ. FASTQ files have a variety of encoding
schemes produced by different vendors; the oldest, “Sanger-style” encoding is preferred for
data sharing. [27]

2.2 Demultiplexing

It is possible to simultaneously sequence multiple samples by attaching artificial sequences
which are recognized as sample identifier labels. Called “multiplex identifiers” or more
commonly barcodes, these are synthetic sequences that are not part of the biological signal,
but permit many samples to be run at lower per-sample depth and cost. The recognition of
barcodes and separation of a mixture of samples into sequence data for individual samples
is called demultiplexing and is an essential part of sequencing protocols which use pooled
samples.
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2.3 Quality filtering

Sequence quality data can be used to filter the raw instrument output to improve the signal-
to-noise characteristics of the sequence data. Filtering can be applied to whole reads (ac-
cepting or rejecting each read), can selectively discard low-quality basepairs from the ends of
reads, or can remove reads with characteristics that suggest sequencing artifacts. A number
of recipes for sequence quality filtering exist [28–30], and these generally lower the rate of
erroneous sequence recovery without removing large fractions of the sequence data. Some
sequence analysis methods analyze sequences in a quality-aware way [31], but most of them
depend only on the sequence, not on the qualities. Some workflows discard the quality values
at this stage.

2.4 Contaminant screening

The template DNA usually requires chemical modifications to correctly interface with the
sequencing instrument; kits for these steps are provided by the instrument vendors. These
modifications include shearing and size-selecting the template molecules and ligating artificial
sequences containing the barcodes, primers for in-instrument PCR, and other artificial nucleic
acid constructs that make sequencing possible. These sequences, called adapters are not
intended to be part of the sequencing output, but occur in a minority of output sequences,
ranging from 0.1% to 5%. These unwanted sequences can be removed by similarity searching
and filtering; the significance of their effect as signal contaminants is not known.

When metagenomic samples are extracted to study the microbial communities associated
with animals and plants, considerable amounts of the eukaryotic host DNA may end up being
sequenced. This “host” DNA must be analyzed separately, and it is standard to remove DNA
which matches (by similarity) the genome of the host organism before annotation.

2.5 Clustering and assembly

After quality filtering, clustering and assembly are two approaches to reduce the size and
redundancy of the set of sequences. Clustering and assembly are lossy compression ap-
proaches that identify redundancy in the input sequences and use this redundancy to reduce
the amount of computational effort on similarity searching. Clustering (using, CD-HIT [32]
or UCLUST [33]) is performed for improved speed, replacing a set of similar sequences with
one representative. Assembly, on the other hand, both reduces sequence volume and replaces
short sequences with inferred longer sequences. The compression afforded by clustering or
assembly depends on the sequence-level redundancy of the input data. Some data sets with
dominant genomes that comprise a majority of the sequence data have assemblies that re-
duce to 1% of the input sequence bulk, while others fail to compress significantly. These
longer, derived sequences are called contigs and represent data from multiple instrument
reads. If neither of these approaches is used, the filtered short reads can be annotated.
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2.6 Gene prediction

Unlike clustering and assembly, which are principally technologically-inspired steps, gene
prediction is a computational step which attempts to identify a biological pattern, mimicking
the patterns recognized by transcription and translation machinery. Gene predictors take
DNA sequences as their input, predict the start and stop sites of genes contained on those
sequences, and produce in-silico translations of the genes so identified.

This translation step converts nucleic acid sequences into amino acid sequences, reducing
the length of the sequences by a factor of about three. Since individual reads are shorter
than typical microbial gene sizes (ca. 900 bp [34]), individual-read gene prediction produces
mostly incomplete predicted protein sequences. This factor-of-three reduction in sequence
length reflects the fact that gene prediction is a lossy compression step.

Gene prediction tools were developed for the annotation of complete or near-complete
genomes, and were later adapted to handle short-read data. GLIMMER uses interpolated
Markov models whose parameters are trained on long coding regions and smoothed to give
predictions on shorter coding regions. [35] It is well suited for assemblies from single organ-
isms.

For short reads or contigs from mixtures of organisms, one-size-fits-all gene prediction
tools are indicated. MetaGeneMark [36, 37] and MetaGeneAnnotator [38] were early appli-
cations of Markov models to gene prediction; they deliver good results on error-free data.
More recent and more elaborate gene predictors are FragGeneScan(FGS) [39], which uses a
hidden-Markov model, and Prodigal [40], which uses dynamic programming, are engineered
to perform well on short reads. FGS and Prodigal have more robustness against sequencing
error.

Gene prediction accuracy in complete genomes is reported as better than 95%; for short
reads (or short contigs) the accuracy is lower. It should be mentioned that gene prediction is
not equally sensitive across taxa; some organisms have genes which the gene prediction tools
miss 20% of the time. The loss of sensitivity for some organisms is more severe for shorter
reads (less than 200 bp). The increased bias and reduced sensitivity of short-reads drives
many researchers to perform assembly of short-reads prior to annotation; this exchanges the
biases caused by short reads for yet-uncharacterized biases caused by assembly.

3 Annotation of genes

At this stage, the biologist’s central questions, “Who” and “What” are addressed by clas-
sifying the sequences. Annotation is the process of assigning biological meaning to the
sequences, usually after gene sequences are identified from bulk reads or from partially-
assembled contigs. Annotation consists of comparison, either explicit (similarity searching
against a database of sequences) or implicit (searching against models or profiles derived
from sets of sequences) against a database of sequences that have already been named.
These databases include previously annotated and/or manually curated sequences. Com-
paring new sequences to existing ones allows each sequence to be associated with the name
of the organism, of the protein, of the function, or of the pathways associated with the
protein in the database. Taxonomic classification refers to annotation that produces in-
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Table 1: Summary of the homology-based and composition-based methods for WGS taxo-
nomic classification

Features Classifier Published Method

Similarity-based
Alignment BLAST [41], CARMA3 [42], MetaPhyler [43], MetaPhlan

[44]
Alignment + Last Common Ancestor MEGAN [45], MARTA [46], MTR [47], SOrt-ITEMS [48]
Clustering + Alignment jMOTU [49]

Composition-based

Näıve Bayesian NBC [50,51]
Support Vector Machines PhyloPythiaS [52]
Interpolated Markov Models (IMM) Phymm [53] and Scimm [54]
Miscellaneous TACOA [55], RAIphy [56], and MetaCluster [57]

Mapping Bloom Filter FACS [58]
Burrows-Wheeler Transform Bowtie2 [59], BWA [60], SOAP [61]
Miscellaneous CLC [62], MAP [63], SMALT [64]

Phylogeny
Maximum-Likelihood EPA [65], pplacer [66], FastTree [67]
Miscellaneous SAP [68]

Hybrid IMMs+BLAST PhymmBL [53]
NBC+BLAST RITA [69]
k-mer Clustering + BLAST SPHINX [70]
Alignment + Phylogeny PaPaRa [71], AMPHORA [72], MLTreeMap [73], TreeP-

hyler [74], (NAST, Simrank) [75]

ferences about organism name; functional classification concerns itself with identifying
biochemical function from protein sequences.

3.1 Taxonomic classification

To answer the “Who is there” question (and its quantitative counterpart, “how much of
each”), methods are needed that are capable of classifiying newly-observed sequences using
information from an existing database of sequences and annotations.

Factors which can impact the classifier’s accuracy include read length and sequence nov-
elty. Classifiers are expected to act on short (less than 200 bp) reads and on variable-length,
but longer, assembled contigs. Short reads, however, can fail to be unique within the sequence
database, thus yielding ambiguous classification. Some of this ambiguity can be overcome
by longer reads but some reflects fundamental similarity between annotated sequences. In
the opposite direction, sequences can be ambiguous because they lack a good match in the
database. The appropriate annotation and interpretaion of these novel sequences remains a
serious challenge for taxonomic classification and annotation in general.

There are four primary methods (see Table 1) to perform taxonomic classification of
genome fragments: homology, mapping, composition, and phylogeny based methods. A fifth
category is emerging that combines two or more of these types. However, hybrid methods
typically take longer to run [25,44].

Many current approaches align sequenced fragments to known genomes using sequence
similarity. This approach has a rich history from BLAST [41], one of the first optimized
alignment tools. While homology-based techniques perform well in identifying protein fam-
ilies and gene homology [76,77], this computation takes longer and can be more costly than
sequencing itself, as noted by [78,79]. Also, the e-values provided by these tools signify that
the sequence does not match by chance, but they do not indicate a particular confidence to
the chosen class-label (e.g. if the sequence may belong to two protein families above random
chance, which family’s assignment is more confident?)
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New methods have emerged that perform similarity searches using dramatically fewer
computational resources than BLAST and FASTA. Called read mappers, these employ data
structures including the Burrows-Wheeler Transform [59–61] and Bloom filters [80]. The
Burrows-Wheeler transform(BWT) is a a type of transform that makes the sequence com-
pressible and fast to search. Read mappers based on BWT have quite fast mapping times
with high sensitivity and low false positive rates. These techniques promise to be fast but
as noted, the false positive rate must be optimized. Bloom filters are probabilistic data
structures based on hashing that have efficient lookup times, have no false negatives, and
have “manageable” false positive rates.

Composition-based classification approaches use features of length-k motifs, or k-mers,
and usually build models based on the motif frequencies of occurrence. Intrinsic compo-
sitional structure has had many applications in sequence analysis: Markov models [81], in
tandem repeat detection [82, 83], inference of evolutionary relationships based on di-, tri-,
and tetra-nucleotide compositions [84–91], and the examination of longer oligomers for ge-
nomic signatures [92]. Wang et al. [93] use a naive Bayes classifier with 8-mers (k-mers of
length 8) for 16S recognition. Sandberg et al. pioneered work for whole- genome shotgun
sequencing [94]. However, taxonomic classification of WGS sequences has been developed
since with a few naive Bayes classifier implementations, support vector machines, interpo-
lated Markov models, and probabilistic analyses of k-mers (see Table 1). The advantage of
composition-based methods is that they are fast, but they have difficulty assessing the true
confidence of their assignments.

Phylogenetic methods attempt to classify a sequence and infer its placement on a phy-
logenetic tree. These programs aim to address a common question in biology: how is the
sequence under study related to the known sequences? These methods infer the position
of the new sequence in a tree describing inferred evolutionary relationships between se-
quences. Note, however, that not all programs compute the branch length. The advantages
of phylogenetic methods are to assign taxonomy at upper-level and lower-level ranks, making
“novelty-detection” inherent. However, these methods are very computationally intense.

In addition, many “hybrid” techniques are now emerging that attempt to combine usually
composition and homology based methods, since they often complement each other. These
techniques often combine the fine resolution of composition-based methods with the more
general similarity measures of homology. There are some phylogenetic algorithms that do a
pre-processing alignment against a precomputed reference alignment of marker genes before
phylogenetic placement (see Hybrid Alignment+Phylogeny in Table 1).

3.2 Protein similarity searches and databases

The “Who is there” question can be approached using either protein sequences or nucleic acid
sequences, but the “What are they doing” question is best answered with proteins. Starting
from predicted protein sequences from a measured dataset, protein annotation tries to infer
the most likely function of the gene sampled. This has been an extremely prolific area with
homology searches being used to identify function from similar protein domains. However,
proteins are complicated: similar sequences sometimes have different function and distant
sequences sometimes have similar functions. Consequently, much effort has been placed
not only in the methods to identify function but also into development of comprehensive
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databases. Protein similarity searching is a step that usually requires the most computation–
owing to the size of the databases used for comparison.

Researchers can infer the function of unknown metagenomic sequences from the func-
tions of known sequences in the databases that they resemble the most. A variety of func-
tional databases has enabled researchers to view gene composition from various angles. The
databases are built upon reference sequences and have different types and different levels of
detail of additional information about the sequences. Some organize protein functions into
hierarchies at different resolutions, while others emphasize proteins in particular specialties.
This section describes some of the databases used to annotate protein-coding genes, which
constitute a major part of most metagenomic samples.

Two of the largest reference sequence collections are the Universal Protein Resource
(UniProt) databases [95], and NCBI’s RefSeq database [96]. The former are a set of
protein databases developed to provide comprehensive knowledge on various protein func-
tions. The UniProtKB/Swiss-Prot database, which is probably the most popular among
UniProt databases, has manually curated annotations by expert reviewers and covers a va-
riety of protein functions. The latest release of UniProtKB/Swiss-Prot in November 2012
contains 538,585 sequence entries coming from 12,930 species. There is also a database
specifically developed for metagenomic and environmental data called the UniProt Metage-
nomic and Environmental Sequences (UniMES). It is composed of metagenomic sequences
clustered into groups (functional features) using CD-HIT algorithm [97]. RefSeq contains a
variety of non-redundant and curated DNA, RNA and protein sequences. While annotations
are mainly available for a subset of the database, especially human sequences, RefSeq also
profiles conserved domains from NCBI’s Conserved Domain Database and protein features
from UniProtKB/Swiss-Prot. The database now includes 17,977,767 proteins comprised of
6,003,283,860 amino acids, and includes the complete genomes of 18,512 organisms (release
56 in November 2012). Refseq is continually updated with newly sequenced organisms.

Although tens of millions of genes have now been annotated, the variety of descriptions
of these genes can still be hard to summarize or interpret. With this concern in mind, the
Gene Ontology database [98] strives to standardize the representation of gene and gene
product attributes across species and databases. The annotation of unknown sequences
falls into a well controlled vocabulary, consequently, it is widely used for interpreting gene
functions. While Gene Ontology started out as a database for all eukaryotes, it now contains
a prokaryote-specific subset.

The Clusters of Orthologous Groups of proteins (COGs) [99] database catego-
rizes the conserved sequences across complete genomes based on orthologous relationships
between them. Each COG contains either a single protein or an orthologous group of pro-
teins from multiple genomes, and is classified into one of 23 functional categories. Such
high-level classification provides a general view of metagenomic constitutions, and allows for
low-resolution comparison between samples. The latest COGs in 2003 contain 4,873 entries,
covering proteins from 66 prokaryote and unicellular eukaryote genomes. The eukaryotic ver-
sion of it, eukaryotic orthologous groups (KOGs) [99], includes 7 eukaryotic genomes.
To further improve the orthologous groups database by adding more annotated genomes,
eggNOG [100] inherits the functional categories from COGs/KOGs but has expanded to
contain 721,801 orthologous groups of 4,396,591 proteins, covering 1133 species (as of Jan-
uary 2013). This database is constructed through identification of reciprocal best BLAST
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matches and triangular linkage clustering. Compared to COGs/KOGs, eggNOG has a finer
phylogenetic resolution and a hierarchical classification of protein function, as well as offers
more frequent database updates.

Separating orthologous groups, however, is not the only way to explore the diversity of
functional roles. Analyzing all biological reactions that can possibly be completed by the
gene content is another quest popular among bioinformaticians. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) [101] provides manually drawn pathways that map
genes and other molecules into chains of reactions. It is a good way to examine and compare
the functional composition of metagenomes, and to identify genes playing a role in specific
biological processes. As of January 2013, the KEGG Pathway has 435 pathway maps in
total. The Metacyc [102] database is a different pathway database belonging to the BioCyc
database collection [102]. It contains more than 1,928 experimentally elucidated metabolic
pathways from 2,362 organisms (version 16.5 released in November 2012). About 38% of
the reactions can be linked to KEGG. However, compared to KEGG pathways that are
constructed typically based on reactions from multiple species, Metacyc pathways are often
smaller and picture reactions within single organisms. To view the pathways in a different
way, SEED [103] provides an annotation environment that generalizes pathways into 891
subsystems (as of January 2013). Each subsystem is a set of functions that piece together
a specific pathway, biological process or structural complex. As one of the initial attempts
to address comprehensive, expert-curated metabolic subsystems for genomic analysis, SEED
annotation has been included by almost all of the large-scale analysis pipelines.

3.3 Protein domain annotation

Protein domain annotation is an alternative approach to sequence similarity searches. Rather
than relying on pairwise sequence alignments, domain annotation uses models that repre-
sent conserved protein regions. These conserved regions are inferred from multiple sequence
alignments (of database proteins) and have higher theoretical sensitivity than sequence com-
parisons lacking weights informed by biological conservation. Conserved protein regions,
or domains/families, are represented by Hidden Markov Models (HMMs) built from multi-
ple sequence alignment. Instead of sequence similarity, which searches for local alignments,
protein domain annotation scans for small functional regions the genes may carry.

The Pfam database [104] is a large collection of protein domains/families containing
13,672 entries (Release 26.0 in November 2011). It is mainly comprised of sequences from
UniProt Knowledge Database [95], NCBI GenPept Database [105] and Protein Data Bank
[106]. Because of its wide coverage of proteins and intuitive naming strategies, Pfam has
become a preferable annotation resource for protein domains/families. TIGRFAMs [107]
are a similar set of models designed to be complementary to Pfam. The development of
this database aims to provide functionally accurate names for genes being annotated, so
that a well-informed annotator would assign the same protein name across different species
with good confidence [108]. HMMER3 [109] is a software package that applies accurate
probabilistic models for searching the HMM profile, and can be used to annotate sequences
with Pfam or TIGRfam-derived clusters.

FIGfam [110] is another collection of protein families. Unlike Pfam’s sensitive identi-
fication of all possible domains on the given sequences, FIGfam strictly requires full-length
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sequence similarity and common domain structure within a protein family, sacrificing sensi-
tivity for more accurate sequence binning. It currently contains more than 100,000 entries,
coming from over 950,000 manually annotated proteins of many hundred bacteria and ar-
chaea. Two other multiple sequence alignment bases, TIGRFAM [107] and PIRSF [111],
have a similar requirement for binning proteins into families. However, these two databases
cannot compete with FIGfam in the number of manually curated sequences, coverage of
families, and computation time [110].

It should be mentioned that there are many other protein family databases similar to the
ones above but that focus on maintaining annotations for particular classes of proteins, such
as PROSITE [112] that focuses on the biological functions of domains, BLOCKS+ [113]
that focuses on the family’s characteristic and distinctive sequence features and SMART
[114] that focuses on domains found in signaling proteins, extracellular and nuclear domains.
Additionally, some databases use protein secondary structure in characterizing protein func-
tions, such as in SCOP [115] and CATH [116] databases, aiming to provide a comprehensive
description of the structural and evolutionary relationships between all proteins whose struc-
ture is known. There are also databases that take into consideration both sequence alignment
and secondary protein structural information, such as SUPFAM [117] and ProDom [118].

3.4 ID mapping and computational complexity

As functional databases become more diverse, considerable effort has been made to con-
nect similar entries of various databases, in order to gain comprehensive understanding of
numerous gene annotations and avoid non-necessary repeat of annotation work.

Some databases incorporate annotations from other databases, such as InterPro [119]
that integrates protein signatures from a variety of sources including Pfam, PROSITE,
ProDom, PIRSF, CATH, TIGRFAM etc., and the M5NR database [120] that integrates
Gene Ontology, KEGG, SEED, UniProt, eggNOG etc. About 80% of the proteins in
UniProtKB/Swiss-Prot have Pfam matches. Also, the entry mapping between many func-
tional databases is made available on the UniProt website, including the mapping between
most entries in UniProt, PIRSF, RefSeq, KEGG, eggNOG, BioCyc etc. In addition, the
UniProt Gene Ontology Annotation (UniProt-GOA) database [121] provides high-quality
Gene Ontology annotations to proteins in the UniProt Knowledgebase.

While gene annotation provides direct insight into the functional composition of metagenomes,
the proportion of sequences that can be annotated are relatively limited. A gene annota-
tion example for human gut metagenomes published in a comparative metagenomics study
shows that most functional annotations are only able to assign less than 50% of the samples
(Table 2) [122], revealing a need to improve current annotation methods and characterize
genes with yet unknown functions.

Another challenge for similarity searching is the expensive computational cost compared
with taxonomy classification, using searching tools either against reference sequences or
HMMs. Using the dataset 6-19-DNA-flx(MG-RAST accession 4440276.3) as an example, a
marine metagenomic sample collected from coastal waters in Norway. This dataset repre-
sents 68Mbases of metagenomic sequence data which reduces to 255,702 predicted protein
sequences. It takes 34.0 CPU hours on a local machine (single 800MHz AMD Phenom(tm)
II X6 1045T processor) to BLAST it against UniProtKB/Swiss-Prot database, resulting in
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Table 2: Percentage of metagenome samples covered by gene annotation resources.
Metagenomic samples Sequences annotated Gene annotation resource

MetaHit dataset (124 samples) 77.1% Taxonomic annotation
50.2% Pfam
40.7% KEGG Ontology
18.7% KEGG Pathway

A multi-source dataset (52 samples) 52.0% Pfam
47.5% Gene Ontology

28.8% of the sequences annotated (e-value 10e-5), while it takes 59.9 CPU hours to search
Pfams, annotating 30.4% of the sequences.

Shotgun metagenomic datasets at present comprise between 107 and 1011 base pairs per
sample, sometimes amounting to billions of reads. The databases to be searched have typ-
ically 109 − 1010 amino acids. Searching ever-larger sets of sequences for matches against
growing databases of ”known” sequences makes annotation the most computationally ex-
pensive step in sequence analysis [123]. With more metagenomic data made available by the
use of high-throughput sequencing, faster annotation procedures are urgently needed.

3.5 Existing pipelines for metagenomic annotation

Several large-scale pipelines provide gene annotation for metagenomic data across various
functional databases. MG-RAST [124], for example, is a fully automated analysis pipeline
designed specifically for metagenomic data. It provides functional annotation on KEGG,
eggNOG, COG and SEED subsystems on multiple levels of resolution. IMG/M [125] is
another automated annotation pipeline. It can be used for annotating COGs, Pfams and
KEGG pathways, with a preference for larger assembled contigs compared to MG-RAST.
RAMMCAP (Rapid Analysis of Multiple Metagenomes with a Clustering and Annotation
Pipeline) [126] provides implementation of HMMER for Pfam and TIGRFAM annotation,
as well as BLAST for COG annotation.

4 Cross sample analysis

This section focuses on the last building blocks (from Figure 1) of metagenomic sample
analysis. Here we are concerned with inferring information based on the community data
matrix, as detailed in Figure 2.

We will first review some ways to compare data and project them for visualization pur-
poses and then introduce methods to select a subset of features that should be the most
useful for further processing.

4.1 Initial manipulation of annotation

In cross sample analysis, one is interested in comparing samples and finding the features
that make different samples and samples with different mutated distinct. Samples represent
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Figure 2: As a last step in the analysis of metagenomic data, feature selection methods are
important in understanding microbial communities. This corresponds to a zoom in on the
two last boxes of Fig 1

mixtures of microorganisms; these mixtures might contain slightly different lineages of a
particular species of organisms, might contain the same organisms in different proportions,
or might contain completely different organisms over varying environments. We will first
examine the k-mer representation, an annotation-independent approach to creating features
from sequence data. We then examine distance metrics, the mathematical procedures to
compare datasets, and probability measures on phylogenetic trees, biologically-relevant dis-
tance measures. Finally we introduce some projection methods for dimensionality reduction
for the visualization of high dimensional data.

4.1.1 Alignment-free sequence comparison: the k-mer representation

While sequence alignment is the traditional approach to analyzing DNA sequences, there are
alternative approaches, called “alignment-free” sequence analysis methods, reviewed in [127].
One such is the k-mer representation of sequences, but the general principles apply to any
vector space of features. We use the k-mer representation here as an example.

k-mers (alternatively called n-mers, `-tuples, n-grams in natural language processing, or
“words”) are subsets of a biological sequence of fixed length. The integer k denotes the
length of these subsets. Given an alphabet Ω = {A,C,G, T} a DNA sequence corresponds
to a word x of length n on that alphabet, i.e. x ∈ Ωn. However, n being very large in the
case of genome analysis (in the order of magnitude of 106-107), we prefer to decompose it
in sub-words or sub-sequences of a given length k. There are two perspectives to represent
the data: a set theory point of view and a frequentist or probabilistic point of view. Table 5
gives examples of the two representations in terms of dimers (kmers with k = 2) for two
short DNA sequences.

Assume an input sequence x of size n and let us denote by Vk(x) = {ω ∈ Ωk : ∃l ∈
{1, · · · , n}, xl···l+k−1 = ω}. This is the set of all k-mers found anywhere in the read x.

k is a parameter which can be chosen by the researcher. As k increases the set of possible
k-mers (numbering 4k) increases exponentially. Since biological sequences are finite, for large
enough k (in the range 8-14) the set of k-mers not encountered always becomes larger than
the set of k-mers actually observed. Table 3 illustrates this behavior. It shows a calculation
of the number of distinct k-mers contained in the 12817 bp woolly mammoth mitochondrial
sequence (GenBank accession DQ188829.) Table 4 shows a similar calculation on the much
larger (5.5 Mbase) genome of the bacterium E.coli O157:H7 (Genbank accession AE005174).
As we can see from these two tables, the larger the size of the k-mers, the less likely a random
k-mer is to occur. The probability distribution of these subsequences, and of numbers in the
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k-mer representation, is an area of current study useful for interpreting comparisons between
these representations.

Table 3: Evolution of the set of found k-mers with k getting bigger.
Mammoth (12817 nucleotides) |Vk(x)| Max Ratio

k = 4 256 256 100%
k = 6 3460 4096 84.47%
k = 9 15276 262 164 5.83%

Table 4: Evolution of the set of found k-mers with k getting bigger.
E.coli (5528445 nucleotides) |Vk(x)| Max Ratio

k = 4 256 256 100%
k = 6 4096 4096 100%
k = 8 65450 65536 99.87%
k = 10 925235 1048576 88.24%

4.1.2 Distances and divergences

Once features (whether from taxonomic classification, protein annotation, or k-mer analysis)
have been extracted from a set of sequences, the next most fundamental operation is the
pairwise comparison of samples.

A straightforward tool for comparing two set-based representations x and y is known as
the Jaccard index [128] and defined as:

J(x, y) =
|Vk(x) ∩ Vk(y)|
|Vk(x) ∪ Vk(y)|

(1)

This represents the fraction of common elements over the set of all elements in these two
sequences. We clearly have that J(x, y) = 0 if no k-mer from x is found in y and J(x, y) = 1 if
all the k-mers of both sequences are found in the other. Note that this index only indicates if x
and y contain similar sets of k-mers but does not imply similar ordering of the two sequences.
Another well-known similarity based on set representations is the Sørensen similarity index.
It is defined as:

S(x, y) =
2 · |Vk(x) ∩ Vk(y)|
|Vk(x)|+ |Vk(y)|

(2)

It can be seen as ratio of the the number of k-mers in common to the (potentially doubled)
number of different k-mers found. Once again a 1 corresponds to the case where the sets
of k-mers are exactly the same and 0 happens when there are no common elements. This
similarity is also used in the context of frequency representation and known as the Bray-
Curtis index in this case (see Eq. 3 for the details).

Another remark about the Jaccard (or the Sørensen) index is that it lacks information
regarding the frequency of each k-mer which implies that we have to work on largest sub-
sequences and hence makes it harder to process. Clearly a probabilistic representation of such

13



Machine Learning Analysis of Metagenomic Data Bouchot et al.

k-mers overcome that problem. A sequence of length n has up to m = n−k+1 k-mers taken
from the 4k different options. Denote by mj(x), j ∈ {1, · · · , 4k} the number of occurrences
of k-mer j then the frequency representation of x is given by the 4k dimensional vector
~x = {mj(x)/m}4k

j=1. This representation can also be viewed as a probability distribution
over the set of words of size k. It tells us that the probability of picking k-mer j by randomly
picking a sub-sequence of size k in the DNA sequence x is ~xj.

Another similarity coefficient often used for sequence comparison (and later for sam-
ple comparison) is known as the Bray-Curtis dissimilarity, sometimes inaccurately called a
“distance”. The Bray-Curtis dissimilarity is not a metric; it does not satisfy the triangle
inequality, but is symmetrical. It is defined as

BC(x, y) =
2 ·
∑4k

i=1 min(mi(x),mi(y))

m(x) +m(y)
(3)

It can be seen as the proportion of common k-mers given the sum of k-mers contained in
either of the reads.

Table 5: Set and probabilistic description of two DNA subsequences when considering only 2-
mers (representation for bigger k-mers is impossible). The last column counts the occurrences
of each possible 2-mers (which implies a certain number of 0s)

Sequence x k-mer set V2(x) probability vector ~x

GTACGTACACACA {GT, TA,AC,CG,CA} 1
12

(0, 4, 0, 0, 3, 0, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0)

ATAGACATAGATA {AT, TA,AG,GA,AC,CA} 1
12

(0, 1, 2, 3, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0)

Two DNA sequences (or two entire datasets) can be compared by evaluating the diver-
gence of two probability measures. f -divergences, introduced independently in [129,130], are
particularly appropriate to this task. Divergences are reviewed in [131]. Basseville [132](in
French) offers a quite exhaustive survey of such measures as well.

Definition 4.1 (f-divergence measures) Given two probability distributions P and Q
absolutely continuous with respect to a reference measure µ over the set Ω and denote by p
and q their probability density; moreover, let f be convex and such that f(1) = 0, then the f
divergence of P given Q is defined as

Df (P ||Q) =

∫
Ω

f

(
p(x)

q(x)

)
q(x)dµ(x) (4)

For discrete probability distributions (as are the case in bioinformatics) the previous
formulation is equivalent to the following:

Df (P ||Q) =
∑
i

f

(
p(i)

q(i)

)
q(i) (5)

This framework includes many of the metrics often used in DNA comparison such as
the Hellinger distance and Kullback-Leibler divergence as special cases. Table 6 gives some
examples of such f -divergences. Such divergence measures usually lack symmetry.
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Table 6: Some examples of f -divergence measures
Name Formula f Reference

Kullback-Leibler DKL(P ||Q) =
∑

i q(i) ln
(
q(i)
p(i)

)
t 7→ − ln(t) [133]

Hellinger DH(P ||Q) =
∑

i

(√
p(i)−

√
q(i)
)2

t 7→
(√

t− 1
)2

[134]

Bhattacharyya DBC(P ||Q) = −
∑

i

√
p(i)q(i) t 7→ −

√
t [135]

4.1.3 Unifrac distances

The distances and divergences so far have been mathematical (Sørensen, Hellinger) and
information-theoretic (Kullback-Leibler) in origin, but not biological. When the features
represent organisms with known taxonomic relationships (that is, the samples have been
projected onto a common phylogenetic tree), distances between samples can be constructed
with awareness of the phylogenetic relationships. (The procedure for building a phylogenetic
tree is not developed in this section, as it would bring us far beyond the scope of this chapter.)
The first widely-adopted metric using the phylogenetic tree is the UniFrac measure [136].
This metric can be formulated as follows.

Consider a phylogenetic tree T , that can either be taken as a universal reference or built
based from the two samples. It can be seen as a set of nodes {ni}i and a hierarchical
relationship {tj}j. Now, let A and B denote respectively the first and second samples.
Both can be represented as a set of branches {aj}j (respectively {bj}j) assumed to be in
T . We will abusively write A and B for both the samples and the branches representing
them in the phylogenetic tree but the meaning should be clear in the context. The uniform
fraction (a.k.a. UniFrac) of similarity is defined as the fraction of branches belonging to
only a single sample over the overall length based on both of them. Figure 3 illustrates this
fact. Assume you are given two samples, one containing species 1 to 5 (represented as the
leaves on the tree) and another one containing species 3 to 9. The tree shows a potential
phylogenetic relation between all the species where the dashed blue connections correspond
to phylogenetic relation that are present on both of the samples. The UniFrac similarity
distance between these two samples can be seen as the proportion of solid lines given the
whole tree (or in other words, the size of the tree without the dashed part over the size of
the whole tree).

Formally, we have:

UniFrac(A,B) :=
|A|+ |B| − 2× |A ∩B|
|A|+ |B| − |A ∩B|

(6)

Unifrac can be generalized by considering that each tj has a given length lj (depending
on the inferred time between two branches or any phylogenetic related metrics) and by
weighting the branches by their frequencies or abundances. The yields the weighed UniFrac
measure [137]:

wUF (A,B) :=
∑

li

∣∣∣∣Aim − Bi

n

∣∣∣∣ (7)

where Ai (respectively Bi) is the number of descendant of branch i in A (respectively B),
i.e. Ai = |{tj : ti ∈ ParentsA(tj)}|. m and n denote the respective number of reads in
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Figure 3: Example of a basic phylogenetic tree and how to compute the UniFrac distance
(See text for details)

sample A and B. This formulation corresponds to weighting a certain branch by its relative
importance in the total length of the tree. The original UniFrac metric can be recovered by
assuming that Ai

m
and Bi

n
take values in {0, 1} whether the current branch is in the analyzed

sample or not.
With this new approach, we can generalize even further by noticing that a sample corre-

sponds to a probability distribution on the phylogenetic tree [138]. We can understand this
distribution as What is the probability that picking a random read from a sample corresponds
to this particular taxa? Now keeping this probabilistic view in mind opens new perspec-
tives towards phylogenetic tree-based sample comparison as we can now use any similarity
or divergence measures between probability distributions and adapt them to work on a tree
structure.

In their novel work, Evans and Matsen [138] showed that applying the Kantorovitch-
Rubinstein metric (also known as the Earth Mover’s Distance in computer science or the
Wasserstein distance in mathematics) yields a generalization of the previous weighted and
unweighted UniFrac. We refer to [138] for the mathematical derivations and only give its
formulation:

Z(P,Q) :=

∫
T

|P (τ(y))−Q(τ(y))|λ(dy) (8)

In this expression, P and Q represent both probability measures of A and B respectively
on the phylogenetic tree T . The notation τ(y) denotes the subgraph starting at node y (part
of the tree that is below y). λ denotes the equivalent to the Lebesgue measure on the tree
T (which contains a distance metric derived from the length of the branches).

This generalization can even go one step further by integrating any pseudo-metric f
instead of the absolute value:

Ẑf (P,Q) :=

∫
T

f (P (τ(y))−Q(τ(y)))λ(dy) (9)

It is clear that this definition yields the classical UniFrac metric if f takes the value one
when exactly one of the probabilities P and Q is greater than 0.
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4.1.4 Dimensionality reduction for visualization purposes

Ecologists employ ordination methods when a visual relation is desired based on similarity of
a set of multivariate objects [139,140]. Typically, each object represents a sample site and is
a table representing the abundances of organisms within the community. This composition
generally varies among the sites and may be structured by environmental variables termed
gradients. An ideal ordination technique would display all sample sites in the same order, as
they exist along the environmental gradient, with inter-sample distances proportional to their
separation along the gradient [141]. Various ordination methods are available for both direct
(constrained) and indirect (unconstrained) analyses. The difference between the classes of
methods depends on whether environmental gradient measurements are included (direct) or
omitted (indirect). Popular methods methods discussed below include PCA, PCoA, NMDS,
CA, CCA, RDA and DCA [139–144].

Metagenomic annotations are a class of high-dimensional data that can be explored and
examined using dimension reduction. In such cases we are given a set of n samples (e.g.
samples that are collected from different regions of the body). Each sample, which we call
x, is described by a certain number K of features (e.g. the frequencies or abundances of
annotated microbial species) and all of them are gathered in what is called a data matrix:
X =

[
x(1), x(2), · · · , x(n)

]
∈ RK×n. The number of features can be between 10 and 107,

making visualization impossible (since displaying more than three dimensions is challenging
at best). Picking just three variables to display randomly is not a good choice–it throws
away most of the data without attempting to identify and preserve aspects of the data
that may prove interesting. For concreteness, consider the case where the features are the
abundances of each of K = 150 types of known bacteria. If we decide to choose a subset
of these dimensions of size m = 3 for visualization or further investigation, there are

(
K
m

)
=

K!
m!(K−m)!

= 551300 possible candidates to choose from. We will present two examples of data
reduction techniques that try to choose “interesting” subsets of the feature space that are
commonly used for visualization purposes: Principal Component Analysis (PCA) and
Principal Coordinate Analysis (PCoA). Both rely on projections onto orthogonal axes
representing the most variance of the data as possible.

PCA is a method that projects the data onto axes which contain most of the variance. This
is done by calculating the eigenvalue decomposition of the covariance matrix and keeping only
the projections of the data onto the few most important eigenvectors. This procedure is called
spectral decomposition and the eigenvectors corresponding to the largest eigenvalues are
called the principal components. They point in the directions with the highest variability
of the data. This method reduces the data to a sum of typical mixtures of the different
bacteria in a sample, but it will not give the most relevant bacteria given an outside paramter.
The whole PCA decomposition can be seen as a combination of an average microbiome
mixture over all samples plus some small variations according to some calculated mixtures.

The large dimensionality of feature vectors makes spectral decomposition of the covari-
ance matrix intractable in most cases. Consequently, PCA as a dimensionality reduction
technique is applied to the analysis of (n× n) resemblance or distance matrices.
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PCoA is yet another method for dimensionality reduction useful for visualization [141].
First introduced [145] as a method that would preserve the distances between objects even
when representing them using fewer components, it performs PCA on a modified version of
the distance matrix. A main advantage of using PCoA over PCA is that it allows the user
to tune the similarity of distance metric used for comparison; this fact yields a more flexible
tool regarding the dynamics or range of the different variables. A resemblance matrix is built
by comparing each element of the data matrix to one another using the chosen comparison
metric d:

∀i, j ∈ {1, · · · , n}, Dij = d(xi, xj)

This matrix is then squared and centered as follows:

Aij = D2
ij

Bij = Aij − Ai· − A·j + A

where Ai·, A·j and A denote the means taken of each rows, columns and the whole matrix,
respectively. This matrix transformation does not affect the distance relationships between
the samples and hence keeps the structure of the data. But on the other hand it centers the
data on the centroid of the samples.

Finally, a spectral decomposition is applied to the B matrix and its eigenvectors are
scaled by the square root of the eigenvalues. Usually only a few eigenvectors cover most
the variability of the data. Note that when using the Euclidean distance as a metric for
the resemblance matrix, PCoA yields equivalent result to the PCA approach based on the
spectral decomposition of the covariance matrix.

Some care should be taken with this method. It works well when used with a metric
distance measures (i.e. a binary positive definite form fulfilling the triangle inequality).
Since some beloved discrepancies do not fulfill the triangle inequality, they should not be
used in this framework if one wishes to transform the data into another space. This should
not be a major concern if the only purpose of the transformation is the visualization of
the data. Figure 4 shows some PCoA plots for the Human microbiome study, comparing
visualizations based on Hellinger distance (left hand side) and Euclidean distance (to the
right). Note that PCA would give similar results to the PCoA with the Euclidean distance.

4.1.5 Testing for differences

Once we can visually see that the sample groupings are separable, we may wish to test
whether the visual differences are statistically significant or not. The ANalysis Of SIM-
ilarity (ANOSIM) tool was first introduced in [146, 147] to solve this problem, as a hy-
pothesis test based the distance matrix used in PCoA.

Assume you are given labels associated to the different samples (for instance the site
where they were taken from). We order the set of all different distances in an increasing
order and replace the distance matrix D by the rank matrix RD where the components of
RDij correspond to the rank of Dij. Then compute the within site similarity Rw as the
average of all ranks between two samples coming from a same site on the one hand and the
between class similarity as the average of all ranks between samples with different labels.
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Figure 4: PCoA plots of the 15 month study of the human microbiome [4] (left) Hellinger
and (right) Euclidean.

The ANOSIM test calculates

R = 4
Rb −Rw

n(n− 1)
(10)

where n denotes the number of samples. The higher the value of this number the better it
is. Moreover note that the value has to be in the range [−1, 1] where values closer to 1 mean
that the data are highly separable.

To compare the significance of the data to a null hypothesis, we can construct the null
hypothesis by permuting randomly the labels of the samples and then comparing the signif-
icance of the original R against the null hypothesis R to see of the original R has greater
significance.

4.2 Feature selection

Section 4 discussed several dimensionality reduction techniques, all of which are based on
the projection of observations onto a lower dimensional space. For example, PCA projected
the observations onto a lower dimensional space that maximized the variation in the data.
In this section, we describe feature selection tools that identify features that can best
discriminate between multiple classes in a data set. That is, we seek to identify a subset of
features Fθ of the original F that provide the best discrimination between multiple classes
in the data set. This parallel way of processing the data is illustrated on Fig. 2. As we
can see, projection based methods introduced in the previous section and feature selection
algorithms developed in this section can be done parallel to each other and may be combined
for further classification of data.

As an example, we may want to determine differences between healthy patients’ and
unhealthy patients’ gut microbiomes. The goal here is to determine which organisms carry
information that can differentiate between the healthy and unhealthy populations. From a
machine learning perspective, this is a feature selection problem; however, from a biological
perspective, the selection of organisms allows the biologist the opportunity to identify a set of
species that is responsible for differentiating healthy and unhealthy patients. It is important
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to note that there may be additional factors that influence the results, but may not be in
the feature set.

Selecting highly informative features is the primary objective of any feature selection
method; however, other objectives are typically used in feature selection as well. Clearly,
selecting features that are relevant is of top priority, but many feature selection methods
have redundancy tools integrated into their selection objective as well. That is, they select
informative features that are not redundant with one another. Many biologists may not be
worried about redundancy if the sole purpose of the their data analysis is to find the most
informative features, because they simply do care that they may be redundant. Classification
scenarios generally need to have some form of redundancy built into the feature selection
algorithm to boost the prediction accuracy.

In section 4.2 and its subsections, we have solely focused on filter-based feature selection
methods, rather than wrapper-based feature selection. The interested reader is encouraged
to pursue recent literature for the differences between various feature selection methods
[148–151].

4.2.1 A Forward Selection Algorithm

In feature selection, we have an objective function J that we seek to maximize, and this
function is dependent upon a subset of features Fθ. The goal of the forward selection
algorithm is to find k features in F that maximize the objective function. A simple forward
selection algorithm to achieve such a task is shown in Figure 5.

The algorithm begins by initializing Fθ to an empty set, and the method takes in a
number of features to select (k) and the original feature set (F). Let Xj be a random
variable for feature j and Y be the variable that determines the class label (e.g., healthy vs.
unhealthy). The first step is to find the feature Xj which maximizes the objective function
J that takes in the arguments Xj, Y , and Fθ. The feature, Xj, that maximizes equation
(11) is added to Fθ and removed from F . This process is repeated until the cardinality of
Fθ is k.

The feature selection algorithm in Figure 5 is a simple method to select the k features that
maximize the objective function; however, the algorithm makes a key assumption that is often
not true – feature independence. This algorithm assumes that all features are independent of
each other, which is generally not the case with many real-world data sources. Nevertheless,
this approach has been shown to be quite robust to a number of problems even when the
assumptions are violated in practice [150,152–154].

4.2.2 Information-Theoretic Feature Selection

The feature selection algorithm presented in Section 4.2.1 relied on an objective function;
however, such a function has not yet been discussed in detail.

So far the objective function depends on Xj, Y , and Fθ, but what is the form of the
function? Intuitively, it should promote features that are capable of describing the Y . That
is, find the features that carry the most information about Y . In this section we focus solely
on information-theoretic objective functions.
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Input: Feature set F , an objective function J , k features to select, and initialize an
empty set Fθ

1. Maximize the objective function

Xj = arg max
Xj∈F

J (Xj, Y,Fθ) (11)

2. Update relevant feature set such that Fθ ← Fθ ∪Xj

3. Remove relevant feature from the original set F ← F\Xj

4. Repeat until |Fθ| = k

Figure 5: Generic forward feature selection algorithm for a filter-based method.

The fundamental unit of information is entropy1, which measures the level of uncertainty
in a random variable X. Mathematically, this is given by,

H(X) = −
∑
x∈X

pX(x) log pX(x) (12)

where pX is the marginal probability distribution on the random variable X with possible
outcomes in the set X . The antilog of the entropy, an information metric, can be interpreted
as the number of equiprobable outcomes in a distribution with the same information content.
Different outcomes in the set X contribute different amounts to the overall entropy. Datasets
that are evenly distributed have higher entropy than datasets that are skewed toward a
handful of values2. Maximum entropy is achieved with a uniform distribution on pX(x).
Figure 6 shows that this is the case for a Bernoulli random variable. Similar to standard
probabilities, entropy can be conditioned on a second random variable Y , which gives us
conditional entropy.

H(X|Y ) = −
∑
y∈Y

pY (y)
∑
x∈X

pX|Y (x|y) log pX|Y (x|y) (13)

Conditional entropy can be interpreted as the amount of information that is left in X
after the outcome of the random variable Y is observed. Using the definitions of entropy
and conditional entropy gives rise to mutual information, which is given by,

I(X;Y ) =
∑
x∈X

∑
y∈Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)

= H(X)−H(X|Y ) (14)

1Entropy is measured in bits, nats, or bans depending on whether log2, loge, or log10 is used in the
calculation, respectively.

2Imagine flipping a coin such that P(X = heads) = 0.99 and P(X = tails) = 0.01. Such a random
variable has low entropy because there is little uncertainty in the outcome of X.
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Figure 6: Entropy of a Bernoulli random variable. Maximum entropy, measured in bits, is
achieved when the distribution on X is uniform.

where I(X;Y ) is the remaining uncertainty in X after the uncertainty about X given what
we known about Y is removed. Note that I(X;Y ) = 0 if the random variables X and Y are
independent of each other. This should be quite intuitive since independent variables would
be expected to share any information about each other. Lastly, define the conditional
mutual information,

I(X;Y |Z) =
∑
z∈Z

pZ(z)
∑
y∈Y

pX,Y |Z(x, y|z) log
pX,Y |Z(x, y|z)

pX|Z(x|z)pY |Z(y|z)

= H(X|Z)−H(X|Y, Z) (15)

which is the amount of information left between X and Y after Z is observed. We now
have discussed the appropriate tools in information theory that can allow us to design an
objective function for equation (11) that accounts for feature relevancy and redundancy
(both conditional and unconditional). As an example, equation (16) presents the objective
function for the Joint Mutual Information feature selection method.

JJMI(Xt, Y,Fθ) = I(Xt;Y )− 1

|Fθ|
∑
Xj∈Fθ

[I(Xt;Xj)− I(Xt;Xj|Y )] (16)

There are three terms in JJMI(Xt, Y,Fθ) that controls the features that are selected. The first
term I(Xt;Y ) is simply the amount of information shared between Xt (i.e., the feature under
test), and the class label Y . The second term I(Xt;Xj) is a measure of redundancy and
since I(Xt;Xj) ≥ 0, the quantity decreases JJMI(Xt, Y,Fθ). Hence, a measure of removing
redundant features. The third term shows that the JJMI(Xt, Y,Fθ) can be increased by
having some level of conditional redundancy between features.

4.2.3 Measuring Feature Consistency

The reliability or consistency of a feature selection method remains an important question.
Would the feature selection algorithms always return the same relevant features if we were
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to use the forward selection method on cross-validation or bootstrap data sets? To answer
this question, a simple consistency index may be applied to measure the similarity between
multiple sets.

Typically some form of cross-validation or bootstrapping is applied to a data set and
feature selection algorithm to determine the relevant features; however, what if the features
selected vary slightly over each of the validation/bootstrap trials? In such situations, we
need a way to quantify the consistency of the relevant feature set. Kuncheva developed a
consistency index that meets three primary criteria for an index: (a) the consistency index is
a monotonically increasing function of increasing elements in common with two sets union,
(b) the index is bounded, and (c) the index should have a constant value for independently
drawn subsets of features of the same cardinality [155]. Using these criteria, Kuncheva
derived the following definition of consistency.

Definition 4.2 (Consistency [155]) The consistency index for two subsets A ⊂ F and
B ⊂ F , such that r = |A ∩ B| and |A| = |B| = k, where 1 ≤ k ≤ |F| = K, is

IF(A,B) =
rK − k2

k(K − k)
(17)

What Does All This Mean? This section has described the information theoretic tools
to select / design an objective function for a feature selection method. If the end goal is to
strictly find highly informative features than maximizing I(Xj;Y ) is sufficient. However, for
many classification problems incorporating redundancy and conditional redundancy is quite
beneficial over methods that do not use redundancy, though using redundancy terms does
not guarantee improved performance.

5 Understanding microbial communities

In the section above, we have described the methods used comparing metagenomic sam-
ples and identifying relevant features. These machine learning techniques, when applied to
real metagenomic problems, provide us with more opportunities tounderstand the lives of
microbes in their environments.

For example, by assessing the biodiversity across metagenomes, we can learn about the
functional capabilities of microbes in a community and evaluate hypotheses about survival
strategies under environmental shift. Systems investigated already with these tools include
analyzing the redundancy of microbes in infected human lungs of cystic fibrosis patients [156],
the role of microbes in human breast milk in colonization of the infant gastrointestinal tract
and maintenanceof mammary health [157], and the communities of microbes on human skin
to examine how antibiotic exposure and lifestyle changes alter the skin microbiomeselec-
tively [158].

Moreover, the use of metagenomic methods allows a window into the interaction between
microbes. One study, [159] compared human metagenomes across different body sites and
identified 3,005 significant co-occurrence and co-exclusion relationships between bacterial
branches. This is an informative way for us to learn about potential microbial interactions.
There are also a slew of on-going studies that link microbes by similar genes or pathways
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they share, in search of microorganism cooperation and competition. Another tool has been
developed for analyzing the topology of metabolic networks and calculating the metabolic
overlap between species, which provides a way of estimating the competitive potential be-
tween bacterial species [160]. Although this is not readily a tool for metagenomes, it shows
us that extracting metabolic information has potential to answer more biological questions
than we currently do.

In addition to the comparison between microbes, many people are interested in the
symbiosis between microbes and their human host. By comparing the functional capability of
microbiomes and their host, we can learn about microbes strategy to maintain the symbiosis,
such as providing nutrients, degradation of toxins and immune enhancement [161].

We are glad to observe the increase of not only metagenomic studies, but also the increase
of metatranscriptomic, metaproteomic and metabolomic data. The incorporation of micro-
bial genomes, transcripts, proteins and metabolites into the machine learning techniques
introduced provides more information and can possibly lead to personalized medicine [19].

6 Open problems and challenges

There are a plethora of open problems in metageome analysis. We will highlight several that
we believe are important to fully exploit the information in the sequence of a sample and its
relationship to its environment.

Metagenomic annotation can typically provide only an approximate estimate of the tax-
onomic [25, 93, 162] and functional content [78, 124, 163] of an environmental sample (e.g.,
16S rRNA surveys and “light-sequencing” whole-genome shotgun (WGS) studies). The high
coverage of deep WGS sequencing offers the promise of providing the identity and relative
abundance even low-abundance organisms, rather than that of just the most-abundant or-
ganisms. Currently, low abundance taxa cannot be studied rigorously, due to lack of effective
confidence estimation procedures in taxonomic / gene identification: reads originating from
known organisms or gene families can be falsely labeled due to sequencing errors causing
techniques to miss their presence all-together; conversely, reads from novel low-abundance
organisms or genes can be mistaken as errors. Therefore, it is important to be able to assign
a confidence to the probability of detecting an organism in a sample.

High coverage also enables the sampling of genetically novel organisms as well as inform-
ing how these organisms interact with their environment. However, while 18000 genomes
have been sequenced and their annotation nearly completed, many more–in fact vast major-
ity of – species have not been sequenced. This makes deciphering whether a metagenomic
read originates from “novel” organism a formidable task. In fact, due to the pangenome
and the flexible definition of a species, strain classification is practically impossible. A very
important open problem is to identify strains by comparing the assigned gene and taxonomic
labels to previously-known and annotated data about an environment, and offer suggestions
about possible horizontal-gene transfer, genetic modification/evolution, and level of error that
might have affected a read.

Metagenomes are described using thousands of features; features are explanatory vari-
ables that represent species, metabolic pathways, orthologous protein groups, protein fam-
ilies or other functional categories. Methods are needed to exclude features whose abun-
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dance/expression remain stable over certain physiologies, or those that have little or very in-
direct impact on physiological changes of interest. An interesting open problem is to develop
a computationally-identifiable set of metagenome features that are predictive of physiologies.
We hypothesize that different metagenomic datasets will require different feature selection
methods which makes assumptions about the underlying biology.

When comparing multiple samples, dimensionality reduction techniques are used to vi-
sualize the data. However, due to loss of information from dimension reduction, distortion
occurs. In particular, ordination methods suffer from the “arch effect”; a mathematical arti-
fact that has no real relationship to community structure [144]. It arises because the second
ordination axis is constrained to be uncorrelated with the first axis, but is not constrained
to be independent of it. To circumvent the arch effect it is necessary to ensure that sub-
sequent axes do not have a systematic relation to the first axis. Detrended correspondence
Analysis (DCA) has been developed to address the arch effect, but it turn destroys informa-
tion in higher axes that could be related to additional environmental gradients [164]. While
this technique may be useful for single gradient ordination, the arch effect prohibits the
ordination of multiple gradients since axes must be independent in order to be interpreted
separately. Given that many communities are structured by multiple gradients the develop-
ment of corresponding methods is fertile ground for research. Adjacently, the selection of
proper ordination techniques given the sampling depth and magnitude of the gradient (effect
size) is also an open area of research. It has been shown in simulation that an improper choice
of method can lead to erroneous results [143]. Therefore, analysis of methods for discerning
samples that are clustered tightly versus those that are differentiated by a continuum would
be most welcome to the field.
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